
Cloud Computing: Recent Developments

<u>"What Can Cloud Do For You"?</u> Mountain View, CA February 27, 2014

> M. R. Pamidi, Ph. D. <u>C-Cube Consulting</u>

Cloud Vendor Landscape

Public Cloud Services¹ Growth Forecasts² (US\$ billions)

	2013	2014	2015	2016	2017	2020
Gartner	132	155	180	209	244	
IDC	47.4				107	
Merrill Lynch	117					220

¹Includes applications, system infrastructure software, PaaS, servers, and basic storage.

² "<u>Roundup of Cloud Computing Forecasts Update, 2013</u>," Louis Columbus, Forbes, November 16, 2013.

Impact of Cloud Technology

Exhibit 6

Sized applications of cloud technology could have economic impact of \$1.7 trillion to \$6.2 trillion per year in 2025

Sized applications		Potential economic impact of sized applications in 202 \$ trillion, annually		Estimated potential reach in 2025	Potential productivity or value gains in 2025
	Surplus from cloud-based Internet	1.2- 5.5	2–3 billion more Internet users, most in developing economies	Nearly all Internet applications use cloud as a core enabler	\$25–85 surplus per user per month
Enterprise productivity ¹ Ap der ann sof Ott pol apj (no	Infrastructure and operating expenses Application development	0.3- 0.4	\$1.26 trillion or 40% of global IT spending in base scenario ²	Varying levels of cloud adoption across enterprises - All enterprises could have potential to use cloud - Most enterprises may use a hybrid cloud - The share of public cloud usage may increase as cybersecurity improves	20–30% productivity gains • Reduced infrastructure and facilities footprint • Higher task standardization and automation
	Other potential applications (not sized) Sum of sized	0.3	\$1.68 trillion or 60% of global IT spending in base scenario ²		10–15% productivity gains • Standardization of application environment and packages • Faster experimentation and testing
potential economic impacts		1.7- 6.2	L		

1 We have not sized the impact of increased flexibility and convenience to enterprises.

2 Estimates for enterprise cloud based on a global IT budget that does not include telecommunications.

NOTE: Estimates of potential economic impact are for some applications only and are not comprehensive estimates of total potential impact. Estimates include consumer surplus and cannot be related to potential company revenue, market size, or GDP impact. We do not size possible surplus shifts among companies and industries, or between companies and consumers. These estimates are not risk- or probability-adjusted. Numbers may not sum due to rounding.

SOURCE: McKinsey Global Institute analysis

What is IBM up to?

- Ended SmartCloud (Goodbye OpenStack?)
- Pushing SoftLayer (Hello CloudStack?)
- Spending \$1 billion on cloud computing
- Making its middleware available on the cloud
- Plans to spend <u>\$1.2 billion this year</u> to build up a global cloud of computing centers
- Reduce SGA expenses (Can you say RIF, WFR, manpower adjustment?)

What is IBM up to? (cont'd)

- Acquired Cloudant
 - Founded in 2008; 70 employees; had raised \$15.1 million in funding
- Will be pitching Cloudant's NoSQL database CouchDB against Amazon DynamoDB, MongoDB, Couchbase, and DataStax
- CouchDB runs on AWS and Rackspace

CloudStack vs. OpenStack

M. R. Pamidi, Ph. D. <u>C-Cube Consulting</u>

Work began at Cloud.com.

Goal was to enable SPs and enterprises to create and operate public or private clouds with capabilities equivalent to Amazon's <u>EC2</u>.

Embraced OpenStack for Project Olympus in May 2011.

Acquired Cloud.com in July 2011.

Abandoned Olympus in April 2012.

BUSINESS & FINANCE SOFTWARE

Citrix Takes CloudStack to Apache, Abandons OpenStack

Nancy Gohring @@ngohring

Apr 3, 2012 5:20 AM 🛛 🖶

Citrix has abandoned its Olympus OpenStack distribution and will focus instead on its open-source CloudStack operating system, which it has contributed as a project under the Apache Software Foundation.

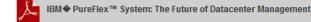
Released Cloud.com code to Apache in April 2012.

Now supports both CloudStack and OpenStack.

Citrix Embraces 'Anyness' and the OpenStack Cloud

By Sean Michael Kerner | Posted 2013-11-11 🛛 Email 🖷 Print

VIDEO: The general manager of Citrix's cloud efforts explains how his firm both supports and competes against the open-source OpenStack cloud.


In the early days of the open-source OpenStack cloud platform's development, Citrix Systems was a key backer adopting the platform as the basis for its own Project Olympus commercial OpenStack effort in 2011.

Citrix ended up abandoning Project Olympus in 2012 in favor of the open-source Apache CloudStack platform. As it turns out, Citrix in 2013 is still somewhat invested in

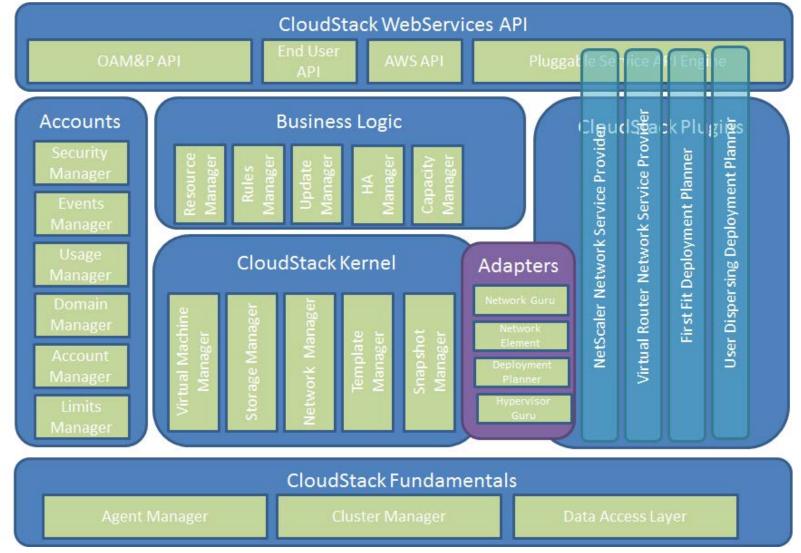
OpenStack as well as CloudStack and is looking to support its customers on both cloud platforms.

In an exclusive video interview with eWEEK at the OpenStack Summit in Hong Kong, Sameer Dholakia, group vice president and general manager of cloud platforms at Citrix detailed his firm's cloud strategy and why it is still supporting OpenStack in various ways.

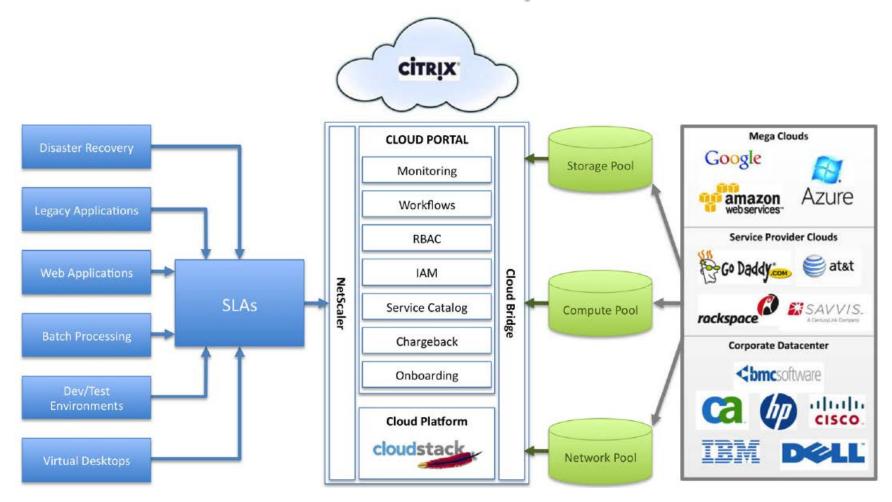
Citrix today is all about the concept of "anyness," that is the idea that customers can choose nearly any technology they want, Dholakia said.

Download Now

"We fundamentally believe that customers deserve and require choice," Dholakia said. "Whatever they want to work with, we will work with."



Project Members include Citrix, Sungard, Schuberg Philis, TCloud Computing, and EPAM Systems.



Contributors include Big Switch Networks, Brocade, Cisco, Juniper Networks, and smaller companies such as Basho Technologies, Cloudsoft, Puppet Labs, and SwiftStack.

CloudStack Architecture

CloudStack: Citrix Implementation

Began as an open source project in 2010 by <u>Rackspace</u> <u>Hosting, Inc</u>. and <u>NASA</u>.

At the time, Rackspace was developing a storage component for its *public* cloud, and NASA was developing a compute component for its *private* cloud.

To avoid redundant efforts, they combined their efforts and created the OpenStack project.

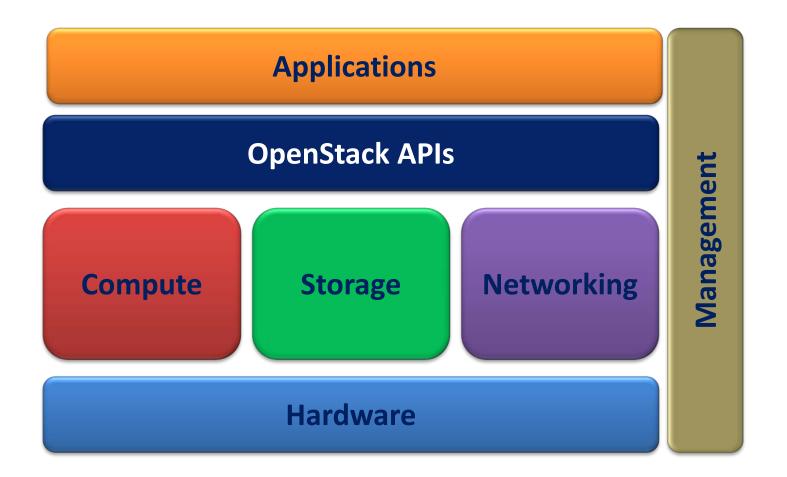
NASA dumped OpenStack in 2012 and moved to an AWS-based Web services model.

Stacks Timeline¹

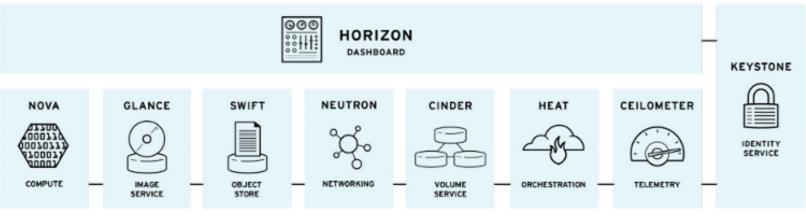
OpenStack Launch 100 80 G 60 κ 40 Н Е D M Ν 20 Jul 2012 Jul 2013 Jul 2010 Jan 2011 Jul 2011 Jan 2012 Jan 2013 OpenStack CloudStack Eucalyptus OpenNebula

¹ "State of the Stack v2," Randy Bias, OpenStack Summit, Hong Kong, November 7, 2013.

2/27/2014

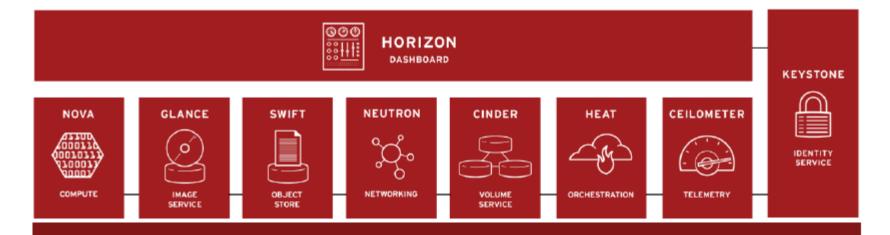

Major penstack Supporters

Over 275 member companies in more than 72 countries worldwide, including Alcatel-Lucent, Arista Networks, Cisco, Citrix, Dell, EMC, Ericsson, HP, IBM, Juniper, NetApp, Rackspace, Red Hat, SUSE, VMware, and Yahoo!



Eight Platinum Members (AT&T, HP, IBM, Rackspace...) and 14 Gold Members (Cisco, Dell, VMware...); Cisco and <u>Nicira</u> have taken major roles in developing <u>Neutron</u> (formerly <u>Quantum</u>), the OpenStack networking component.

OpenStack Architecture



OpenStack Components

OP5T0005

OpenStack: Red Hat Implementation¹

RED HAT ENTERPRISE LINUX

¹Red Hat Enterprise Linux OpenStack Platform (RHELOSP)

Core components were developed by Cloud.com and then enhanced by Citrix.

Monolithic architecture

Installation processes require a medium level of time and expertise.

Strong GUI and Amazon EC2like CLI, offering baseline security ties and some loadbalancing capabilities.

Pluggable model includes:

- A management component that allocates virtual machines to individual servers and an image repository.
- Network support for SDN, flat networking with elastic IP, load balancing as a service, firewall, virtual private clouds, and complex VLANs.

Customers may choose (i) SDN support from Nicira, Midokura, or Big Switch Networks, and (ii) load balancing using F5 or NetScaler.

Supports KVM, vSphere, and Citrix XenServer

Opened to a wide community early in its development, resulting in gaining support from a larger number of major vendors than CloudStack.

Fragmented, distributed architecture

Difficult to install, driven by multiple CLIs

Strong, token-based security system, and uses Swift – the OpenStack massively scalable redundant storage system for high availability

Deployment uses OpenStack components to support each required cloud function.

Includes Neutron, a networking-as-a-service, and <u>Swift and Cinder for object and block</u> <u>storage</u>.

Supports Hyper-V, KVM, LXC, PowerVM, VMware ESX/ESXi, and Citrix XenServer.

Pros and Cons

	Pros	Cons		
CloudStack	 Free Supported by <u>Citrix</u> and friends Battle tested and scalable 	 Smaller community Fewer server, network, and storage devices supported Less flexibility 		
OpenStack	 Free Large community Wide integration with storage, network and compute technologies 	 Limited, immature enterprise features Difficult to deploy and configure Lacks interoperability 		

CloudStack SWOT Analysis

Strengths	Weaknesses
 Less chance of fragmentation and splintering 	 Limited number of 'leading' followers Smaller mindshare
Opportunities	Threats
Expand adopter base	 OpenStack's continued groundswell

OpenStack SWOT Analysis

Strengths	Weaknesses
 Large community Leading stack Flexible framework Many 'benevolent dictators' Better scalability 	 No single 'benevolent dictator' Interoperability difficult, not impossible Flexibility limits interoperability
Opportunities 100	Threats
 Build an SQL92 base for cloud compute Reference stack Develop public cloud compatibility AWS, GCE, and vCloud 	 Customization, fragmentation, and splintering Forking or Ivory Tower thinking Customer DIY failures

Conclusions

- No solid winners
- OpenStack may win in the long run, if it doesn't UNIX-ify
- Keep an eye on Eucalyptus and OpenNebula

Contact

<u>mrp@ccubeconsulting.com</u> <u>C-Cube Consulting</u>